Los tres problemas matemáticos griegos


Característico de alguna de las psicopatologías de Freud, el que yo estaba convencido hasta hace un par de días, que en la escuela algún profesor me enseño con regla y compas a dividir un Angulo en 3 partes: … Mentira! Eso nunca sucedió y si a alguno de uds. le sucedió , su maestro tenia nociones erradas de geometría. Ese y otros dos problemas aquejan a la humanidad desde la época dorada del conocimiento …en la antigua Grecia.
Efectivamente hay 3 que han atormentado las mentes mas brillantes a través de la historia , sin que puedan tener solución alguna. Mas bien a una de estas le resulto mas “fácil” demostrar que NO se podía, .... hechemos un vistazo.
 
 Trisección del Angulo.-
Bueno, este consiste en hallar el procedimiento,  utilizando únicamente compas y regla, los puntos que permitan dividir en tres partes a una Ángulo cualquiera.

Duplicación del cubo.-
Aca se trata de : dado un cubo de lado a, hallar la dimensión exacta del lado de otro cubo cuyo volumen sea el doble del original.


Cuadratura del círculo.-
Ahora sabemos que el perimtetro de un circulo (llamado original) es 2 veces pi(). Bien el problema consiste en, con el compas y la regla dibujar el cuadrado cuyo perimetro sea igual al circulo original.


Dos de las primeras construcciones de regla y compás que aprenden los niños en geometría plana son el trazado de la bisectriz de un ángulo y la división de un segmento en cualquier número de partes iguales. Ambos problemas son tan fáciles que a muchos alumnos les cuesta creer que no haya manera de emplear esos dos instrumentos para dividir un ángulo en tres partes iguales. Con frecuencia es el estudiante mejor dotado en matemáticas el que lo toma como un reto y se pone inmediatamente a trabajar para demostrar que el profesor está equivocado. Algo así pasó entre los matemáticos cuando la geometría estaba en su «niñez».
Quinientos años antes de Jesucristo, los geómetras ya dedicaban gran parte de su tiempo a buscar una manera de combinar rectas y circunferencias para obtener un punto de intersección que trisecase un ángulo. Sabían naturalmente que esta operación podía efectuarse con algunos ángulos; con las restricciones clásicas, pueden trisecarse una infinidad de ángulos especiales, pero lo que los geómetras griegos deseaban era hallar una solución general aplicable a cualquier ángulo dado. Su búsqueda, junto con la de la cuadratura del círculo y la duplicación del cubo, fue uno de los tres grandes problemas de construcción de la antigua geometría.

Pierre Laurent Wantzel quien en 1837 publicó por primera vez, en una revista de matemáticas francesa, la primera prueba completamente rigurosa de la imposibilidad de trisecar un ángulo. Aunque la demostración de que es imposible trisecar cualquier ángulo con regla y compás convence a cualquiera que la entienda, sigue habiendo matemáticos aficionados en todo el mundo que creen haber descubierto un método para hacerlo. El «trisecador» clásico es alguien que sabe suficiente geometría plana para idear un procedimiento, pero que no es capaz de comprender la prueba de imposibilidad ni de detectar el error de su propio método. La trisección es a menudo tan complicada y su demostración tiene tal cantidad de pasos, que incluso a un geómetra experto le resulta difícil encontrar el error que con toda seguridad contiene. Lo normal es que el autor envíe su pseudo prueba a un matemático profesional, quien por lo general la devuelve sin analizarla siquiera, porque buscar el error es un trabajo penoso y estéril.
Esta actitud confirma invariablemente la sospecha del «trisector» acerca de la existencia de una conspiración organizada entre los profesionales para impedir que llegue a conocerse su gran descubrimiento. Suele publicarlo entonces en un libro o panfleto pagado de su bolsillo, una vez que todas las revistas matemáticas a las que lo ha enviado han rechazado su publicación. En ocasiones describe el método en un anuncio del periódico local, en el que indica además que el manuscrito ha sido adecuadamente registrado ante notario.

Jeremiah Joseph Callahan. El último matemático amateur que recibió gran publicidad en los Estados Unidos por un método de trisecar . Anunció que había resuelto el problema de la trisección en 1921, cuando ocupaba el puesto de presidente de la Universidad Duquesne de Pittsburgh. La agencia United Press lanzó una larga historia que había sido escrita por el propio Callahan. La revista Time publicó su fotografía junto con un artículo muy favorable en el que se comentaba lo revolucionario de su descubrimiento. (Ese mismo año publicó Callahan un libro de 310 páginas titulado Euclides o Einstein, en el que demolía la teoría de la relatividad mediante la demostración del famoso postulado del paralelismo de Euclides.
 Se deducía así que la geometría no euclídea, sobre la que está basada la relatividad general, era absurda.) Los periodistas y el público profano mostraron su sorpresa al comprobar que los matemáticos profesionales, sin esperar a ver las construcciones del Padre Callahan, declararon inequívocamente que no podía ser correcta. Por último, a finales de año, la Universidad Duquesne publicó el opúsculo del Padre Callahan con el título La trisección del ángulo
El 3 de junio de 1960 el honorable Daniel K. Inouye, en aquel entornes representante por Hawai y más tarde senador y miembro del Comité de Investigación del Watergate, incluyó en el Congressional Record (Apéndice, páginas A4733-A4734) del 86.° Congreso un largo tributo a Maurice Kidlel, un retratista de Honolulú que no solamente había trisecado el ángulo sino que además había conseguido la cuadratura del círculo y la duplicación del cubo. Kidjel y Kenneth W. K. Young escribieron un libro sobre el tema, con el título de The Two Hours that Shook the Mathematical World (Las dos horas que conmovieron el mundo matemático), así como un opúsculo, Challenging and Solving the Three Impossibles [Desafío y resolución de los tres imposibles].
Vendían esta literatura, así como los calibres necesarios para emplear su sistema, a través de la compañía The Kidjel Ratio. Los dos dieron en 1959 conferencias sobre su trabajo en varias ciudades norteamericanas, y una cadena de televisión de San Francisco, la KPJX, hizo un informe documentado bajo el título The Riddle of the Ages. Según Inouye, «las soluciones de Kidjel se enseñan hoy en cientos de escuelas y colegios de todo Hawai, Estados Unidos y Canadá». Esperamos que la afirmación fuese exagerada.
En un ejemplar del periódico Los Angeles Times, del domingo 6 de marzo de 1966 (Sección A, página 16), se ve cómo una persona de Hollywood había pagado un anuncio a dos columnas para dar a conocer, en 14 pasos, su procedimiento de trisecar ángulos.
¿Qué le puede decir actualmente un matemático a un trisector de ángulos? Le diría que en matemáticas es posible enunciar problemas que son imposibles en un sentido final y absoluto: imposibles en todo tiempo y en todos los mundos concebibles (lógicamente consistentes). Tan imposible es trisecar el ángulo como mover en ajedrez la reina de la misma manera que un caballo. En ambos casos la razón última de esa imposibilidad es la misma: la operación viola las reglas de un juego matemático. El matemático le recomendaría al «trisector» que se hiciese con un ejemplar de algún texto de geometría y se lo estudiara. Y que luego volviera sobre su demostración y pusiera más empeño en encontrar el error. Pero los «trisectores» son una raza muy dura y no es probable que acepten consejos de nadie. Augustus De Morgan, en su Budget of Paradoxes, cita una frase típica tomada de un panfleto del siglo XIX sobre la trisección de ángulos: «El resultado de años de intensa reflexión». El comentario de De Morgan es conciso: «muy probablemente, y muy triste».

Srinivasa Ramanujan (1887-1920), matemático hindú muy enigmático. De familia humilde, a los siete años asistió a una escuela pública gracias a una beca. Recitaba a sus compañeros de clase fórmulas matemáticas y cifras de pi (v.). A los 12 años dominaba la trigonometría, y a los 15 le prestaron un libro con 6000 teoremas conocidos, sin demostraciones. Ésa fue su formación matemática básica. En 1903 y 1907 suspendió los exámenes universitarios porque solo se dedicaba a sus "diversiones" matemáticas. En 1912 fue animado a comunicar sus resultados a tres distinguidos matemáticos. Dos de ellos no le respondieron, pero sí lo hizo G.H. Hardy, de Cambridge, tenido por el más eminente matemático británico de la época. Hardy estuvo a punto de tirar la carta, pero la misma noche que la recibió se sentó con su amigo John E. Littlewood (v.) a descifrar la lista de 120 fórmulas y teoremas de Ramanujan.
Horas más tarde creían estar ante la obra de un genio. Hardy tenía su propia escala de valores para el genio matemático: 100 para Ramanujan, 80 para David Hilbert, 30 para Littlewood y 25 para sí mismo. Algunas de las fórmulas de Ramanujan le desbordaron, pero escribió "...forzoso es que fueran verdaderas, porque de no serlo, nadie habría tenido la imaginación necesaria para inventarlas". Invitado por Hardy, Ramanujan partió para Inglaterra en 1914 y comenzaron a trabajar juntos. En 1917 Ramanujan fue admitido en la Royal Society de Londres y en el Trinity College, siendo el primer indio que lograba tal honor. De salud muy débil, moría tres años después.
Lo principal de los trabajos de Ramanujan está en sus "Cuadernos", escritos por él en nomenclatura y notación particular, con ausencia de demostraciones, lo que ha provocado una hercúlea tarea de desciframiento y reconstrucción, aún no concluida. Fascinado por el número pi  desarrolló potentes algoritmos para calcularlo, alguno de los cuales fascinan por su ingenio hasta ahora.
Un abrazo,


Comentarios

Entradas populares de este blog

...AHI VAN OTROS ESTEREOGRAMAS ESPECTACULARES

Mayores Obras de Ingeniería 2

Programa para Diseño Biaxial de columnas